The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of  PENINGKATAN AKURASI IMPUTASI DATA YANG HILANG PADA DATA DERET WAKTU MULTIVARIAT MENGGUNAKAN DEEP LEARNING.

Skripsi

 PENINGKATAN AKURASI IMPUTASI DATA YANG HILANG PADA DATA DERET WAKTU MULTIVARIAT MENGGUNAKAN DEEP LEARNING.

Yultriyen, Yultriyen  - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

Missing data is a common and complex issue in the industrial world, making data processing more challenging. Imputation methods, whether conventional or using neural networks, are employed to address this issue by estimating or computing the missing values. Deep learning is chosen for its ability to unearth hidden information within data, significantly enhancing the data imputation process. This study utilizes three deep learning methods: LL-CNN, EDR-CNN, and MIRNet. The performance of these methods is evaluated based on root mean squared error (RMSE), mean absolute error (MAE), and R-squared (R²) on eight different datasets: MIMIC-IV, MIMIC III, Beijing Multi-Site Air Quality, Air Quality Italy, Air Quality India, US Pollution, Beijing PM2.5, and Guangzhou. The results of the study show that EDR-CNN provides the best performance across all eight datasets.


Availability
Inventory Code Barcode Call Number Location Status
2407005389T155915T1559152024Central Library (References)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1559152024
Publisher
Indralaya : Prodi Sistem Komputer, Fakultas Ilmu Komputer Universitas Sriwijaya., 2024
Collation
xiii, 131 hlm.; ilus.; tab, 29 cm.
Language
Indonesia
ISBN/ISSN
-
Classification
004.07
Content Type
Text
Media Type
unmediated
Carrier Type
other (computer)
Edition
-
Subject(s)
Pemrosesan data
Prodi Sistem Komputer
Specific Detail Info
-
Statement of Responsibility
SEW
Other version/related
TitleEditionLanguage
 IMPUTASI DATA YANG HILANG PADA DATA DERET WAKTU MULTIVARIAT MENGGUNAKAN ARSITEKTUR U-NETid
File Attachment
  •  PENINGKATAN AKURASI IMPUTASI DATA YANG HILANG PADA DATA DERET WAKTU MULTIVARIAT MENGGUNAKAN DEEP LEARNING.
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search