The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of KLASIFIKASI PENYAKIT MATA PADA CITRA RETINA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK DAN GRAD-CAM

Skripsi

KLASIFIKASI PENYAKIT MATA PADA CITRA RETINA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK DAN GRAD-CAM

Muhammad, Damar Fadhil - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

Eye diseases can be detected by examining the retina of the eye. Therefore, this research develops a system using Convolutional Neural Network (CNN) and Gradient-Weighted Class Activation Map (Grad-CAM) methods that can help diagnose eye diseases based on retinal images. The CNN method is used to classify whether there is a disease or not, so that the system can diagnose the disease suffered by the patient. However, this method has the disadvantage that it cannot display a visual explanation of the classification results, to cover this deficiency this method is combined with Grad-CAM. Grad-CAM can provide a visual explanation of the classification results in the form of a heatmap, so that users of this system can understand the reasons behind the CNN method classifying to a certain class. This research compares the architecture of InceptionV3, MobileNetV2, VGG-16, and various configurations on epoch, learning rate, and batch size in building the best CNN model. The dataset used in this study consists of 4 classes and totals 4217 data. The test results in this study produced the best CNN model using InceptionV3 architecture, epoch = 50, learning rate = 0,0001, and batch size = 8 with an accuracy value of 96,3%.


Availability
Inventory Code Barcode Call Number Location Status
2407004336T151006T1510062024Central Library (Reference)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1510062024
Publisher
Indralaya : Prodi Teknik Informatika, Fakultas Ilmu Komputer Universitas Sriwijaya., 2024
Collation
xii, 117 hlm.; ilus.; 29 cm
Language
Indonesia
ISBN/ISSN
-
Classification
006.370 7
Content Type
Text
Media Type
unmediated
Carrier Type
-
Edition
-
Subject(s)
penyakit mata
Prodi Teknik Informatika
Specific Detail Info
-
Statement of Responsibility
KA
Other version/related
TitleEditionLanguage
METODE ENSEMBLE LEARNING MENGGUNAKAN TEKNIK WEIGHTED VOTING PADA HASIL DENSENET, EFFICIENTNET DAN VISION TRANSFORMER DALAM KLASIFIKASI PENYAKIT MATAid
PENERAPAN DEEP LEARNING UNTUK KLASIFIKASI PENYAKIT MATA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN): ARSITEKTUR DENSENET 121 DAN XCEPTIONid
IMPLEMENTASI DEEP LEARNING UNTUK KLASIFIKASI PENYAKIT MATA DENGAN STUDI PERBANDINGAN ARSITEKTUR INCEPTIONV3 DAN VGG-16 PADA CONVOLUTIONAL NEURAL NETWORK (CNN)id
File Attachment
  • KLASIFIKASI PENYAKIT MATA PADA CITRA RETINA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK DAN GRAD-CAM
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search