The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of DETEKSI SERANGAN MALWARE BOTNET MENGGUNAKAN METODE SUPPORT VECTOR MACHINE

Skripsi

DETEKSI SERANGAN MALWARE BOTNET MENGGUNAKAN METODE SUPPORT VECTOR MACHINE

Agustini, Krisna - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

A botnet is a collection of devices infected with malware and controlled externally by an attacker to carry out network attacks, such as DDoS attacks, data theft, or spreading spam. This research uses a dataset from CICIoT2023 which consists of three types of classes, namely, tame traffic, mirai greip flood, and mirai udpplain to detect botnet malware attacks using the Support Vector Machine method. The Support Vector Machine method uses three types of kernels, namely, Linear, Polynomial and RBF kernels. The results of this research prove that the Support Vector Machine method using the RBF kernel is capable of detecting botnet malware attacks by achieving the best performance with an accuracy rate of 98.25%, precision of 98.58%, recall of 96.52%, and f1-score of 97.54%.


Availability
Inventory Code Barcode Call Number Location Status
2407004145T150164T1501642024Central Library (Reference)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1501642024
Publisher
Indralaya : Prodi Sistem Komputer, Fakultas Ilmu Komputer Uniersitas Sriwijaya., 2024
Collation
xiii, 50 hlm.; ilus.; 29 cm
Language
Indonesia
ISBN/ISSN
-
Classification
004.07
Content Type
Text
Media Type
unmediated
Carrier Type
-
Edition
-
Subject(s)
Prodi Sistem Komputer
Botnet Detection
Specific Detail Info
-
Statement of Responsibility
KA
Other version/related
TitleEditionLanguage
PERBANDINGAN METODE BACKPROPAGATION DAN SUPPORT VECTOR MACHINE DALAM KLASIFIKASI EMOSI PADA PESAN TEKSid
ANALISIS SENTIMEN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN QUERY EXPANSIONid
KLASIFIKASI KATEGORI WAKTU KELULUSAN MAHASISWA MENGGUNAKAN DATA AKADEMIK SEBAGAI UPAYA PERINGATAN DINI BAGI MAHASISWA AKTIF MENGGUNAKAN ALGORITMA DECISION TREE, NAÏVE BAYES DAN SUPPORT VECTOR MACHINE STUDI KASUS : JURUSAN SISTEM INFORMASI UNIVERSITAS SRIWIJAYAid
File Attachment
  • DETEKSI SERANGAN MALWARE BOTNET MENGGUNAKAN METODE SUPPORT VECTOR MACHINE
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search