The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of DETEKSI SERANGAN DDOS DAN MITM PADA JARINGAN SMARTHOME DENGAN METODE MACHINE LEARNING XGBOOST

Skripsi

DETEKSI SERANGAN DDOS DAN MITM PADA JARINGAN SMARTHOME DENGAN METODE MACHINE LEARNING XGBOOST

Ilhami, Anata Ryu - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

The rapid growth of Internet of Things (IoT) devices in smart home environments increases convenience but also introduces various network security threats, such as Distributed Denial of Service (DDoS) and Man in The Middle (MITM) attacks. This study aims to implement and evaluate the performance of the Extreme Gradient Boosting (XGBoost) algorithm in detecting DDoS and MITM attacks on IoT networks. The dataset used in this research is the COMNETS IoT dataset, which was collected from a controlled network topology with simulated attack scenarios. The preprocessing stage includes feature selection, label encoding, and data balancing using the Random Oversampling method. The XGBoost model was evaluated using a 30-fold cross-validation method to assess its robustness and generalization capability. The experimental results show that the XGBoost model with preprocessing achieved an accuracy of 93.9%, precision of 94.0%, recall of 93.0%, and an F1-score of 93.0%, indicating high performance in detecting DDoS and MITM attacks. Meanwhile, testing without preprocessing yielded perfect metrics (1.0) but indicated an overfitting condition. Therefore, it can be concluded that the preprocessing process significantly improves the generalization ability and stability of the XGBoost model in classifying network traffic on IoT environments. Keywords: XGBoost, IoT, DDoS, MITM, Attack Detection, Machine Learning.


Availability
Inventory Code Barcode Call Number Location Status
2507006345T185877T1858772025Central Library (Reference)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1858772025
Publisher
Indralaya : Prodi Sistem Komputer, Fakultas Ilmu Komputer Universitas Sriwijaya., 2025
Collation
xiv, 85 hlm.; ilus.; tab.; 29 cm.
Language
Indonesia
ISBN/ISSN
-
Classification
005.840 7
Content Type
Text
Media Type
unmediated
Carrier Type
other (computer)
Edition
-
Subject(s)
Prodi Sistem Komputer
Virus Smarthome
Specific Detail Info
-
Statement of Responsibility
MI
Other version/related
TitleEditionLanguage
DETEKSI SERANGAN DDOS DAN MITM PADA JARINGAN SMARTHOME MENGGUNAKAN METODE RANDOM FORESTid
DETEKSI SERANGAN DDOS DOS DAN MITM PADA JARINGAN SMARTHOME DENGAN MENGGUNAKAN METODE DECISION TREEid
DETEKSI SERANGAN DENIAL OF SERVICE (DOS) PADA JARINGAN SMARTHOME IPV6 MENGGUNAKAN METODE NAÏVE BAYESid
DETEKSI SERANGAN DDOS DOS DAN MITM PADA JARINGAN SMARTHOME DENGAN MENGGUNAKAN METODE DECISION TREEid
DETEKSI SERANGAN DENIAL OF SERVICE (DOS) PADA JARINGAN SMARTHOME IPV6 MENGGUNAKAN METODE NAÏVE BAYESid
DETEKSI SERANGAN DDOS DOS DAN MITM PADA JARINGAN SMARTHOME DENGAN MENGGUNAKAN METODE DECISION TREEid
DETEKSI SERANGAN DENIAL OF SERVICE (DOS) PADA JARINGAN SMARTHOME IPV6 MENGGUNAKAN METODE NAÏVE BAYESid
DETEKSI SERANGAN DDOS DAN MITM PADA JARINGAN SMARTHOME MENGGUNAKAN METODE RANDOM FORESTid
File Attachment
  • DETEKSI SERANGAN DDOS DAN MITM PADA JARINGAN SMARTHOME DENGAN METODE MACHINE LEARNING XGBOOST
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search