The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK MENDETEKSI KEMACETAN LALU LINTAS SERTA MENENTUKAN JALUR TERBAIK MENGGUNAKAN ALGORITMA HEURISTIC SEARCH PADA JALAN RAYA KOTA PALEMBANG

Skripsi

IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK MENDETEKSI KEMACETAN LALU LINTAS SERTA MENENTUKAN JALUR TERBAIK MENGGUNAKAN ALGORITMA HEURISTIC SEARCH PADA JALAN RAYA KOTA PALEMBANG

Ramadhan, Haris Putra - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

This study developed the YOLOv8 model to detect five object classes, with training results showing an accuracy of 95%, an f-1 score of 89%, and mAP@0.5 of 93.1%. In the testing phase, the model achieved an accuracy of 93.83%, an f-1 score of 83%, and mAP@0.5 of 86.7%. Vehicle counting using YOLOv8 and DeepSORT on 72 videos showed an average accuracy of 95.51% for motorcycles and 79.02% for cars. Additionally, a CNN model for classifying road conditions using a dataset of 320 data entries achieved an accuracy of 89.06% on testing data. The Heuristic Search (A-Star) algorithm was used to find the best route from Ampera Bridge to Sultan Mahmud Badaruddin II Airport, generating six alternative routes with predictions for 12 different conditions, where the best route varied depending on the conditions.


Availability
Inventory Code Barcode Call Number Location Status
2407005187T154248T1542482024Central Library (References)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1542482024
Publisher
Indralaya : Prodi Sistem Komputer, Fakultas Ilmu Komputer Universitas Sriwijaya., 2024
Collation
xiv, 118 hlm.; ilus.; tab, 29 cm.
Language
Indonesia
ISBN/ISSN
-
Classification
055.407
Content Type
Text
Media Type
unmediated
Carrier Type
other (computer)
Edition
-
Subject(s)
Sistem Pemrograman
Prodi Sistem Komputer
Specific Detail Info
-
Statement of Responsibility
SEW
Other version/related
TitleEditionLanguage
IMPLEMENTASI SISTEM DETEKSI ATRIAL FIBRILASI BERBASIS KOMPUTASI AWAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORKid
KLASIFIKASI GANGGUAN IRAMA JANTUNG ARITMIA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK 1-DIMENSIid
File Attachment
  • IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK MENDETEKSI KEMACETAN LALU LINTAS SERTA MENENTUKAN JALUR TERBAIK MENGGUNAKAN ALGORITMA HEURISTIC SEARCH PADA JALAN RAYA KOTA PALEMBANG
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search