The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of PENERAPAN DEEP LEARNING UNTUK KLASIFIKASI PENYAKIT MATA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN): ARSITEKTUR DENSENET 121 DAN XCEPTION

Skripsi

PENERAPAN DEEP LEARNING UNTUK KLASIFIKASI PENYAKIT MATA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN): ARSITEKTUR DENSENET 121 DAN XCEPTION

Sari, Yuni Kartika - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

Retina diseases are a major cause of vision problems that can lead to a loss of sight or even blindness if not detected early. Other eye conditions, like cataracts and glaucoma, can also severely impair vision if not treated properly. This research aims to classify retina images using a Convolutional Neural Network (CNN) approach by comparing two architectures: DenseNet 121 and Xception. DenseNet 121 is known for its parameter efficiency and strong inter-layer connections, while Xception optimizes the depthwise separable convolution process. Test results showed that both models achieved the same high accuracy of 99.05%. However, DenseNet 121 proved to be more efficient in training, taking only 1 second per step, compared to Xception, which required 18 seconds per step. Based on these findings, DenseNet 121 is the best model in this study because it achieves high accuracy with a much shorter training time. Applying this model is expected to support the faster and more accurate detection of retina diseases, thereby aiding medical diagnosis. Keywords: Classification, Retina, Convolutional neural network (CNN), DenseNet 121, Xception, Eye disease, Medical image.


Availability
Inventory Code Barcode Call Number Location Status
2507006275T185641T1856412025Central Library (Reference)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1856412025
Publisher
Indralaya : Prodi Sistem Komputer, Fakultas Ilmu Komputer Universitas Sriwijaya., 2025
Collation
xiv, 100 hlm.; ilus.; tab.; 29 cm.
Language
Indonesia
ISBN/ISSN
-
Classification
617.710 7
Content Type
Text
Media Type
unmediated
Carrier Type
other (computer)
Edition
-
Subject(s)
Penyakit pada Mata
Prodi Sistem Komputer
Specific Detail Info
-
Statement of Responsibility
MI
Other version/related
TitleEditionLanguage
PENGENALAN EKSPRESI WAJAH MANUSIA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORKid
IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK MEMPROSES FACE RECOGNIZER PADA ROBOT MOBILEid
PENERAPAN DEEP LEARNING PADA IMPUTASI DATA TANDA VITAL UNTUK MENINGKATKAN AKURASI PREDIKSI HENTI JANTUNG PADA PASIEN UNIT PERAWATAN INTENSIFid
IMPLEMENTASI KOMBINASI ARSITEKTUR VGG DAN SQUEEZENET UNTUK KLASIFIKASI PENYAKIT PADA MATAid
File Attachment
  • PENERAPAN DEEP LEARNING UNTUK KLASIFIKASI PENYAKIT MATA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN): ARSITEKTUR DENSENET 121 DAN XCEPTION
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search