The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of DETEKSI SERANGAN DDOS DOS DAN MITM PADA PERANGKAT SMART HOME MENGGUNAKAN METODE NAÏVE BAYES

Skripsi

DETEKSI SERANGAN DDOS DOS DAN MITM PADA PERANGKAT SMART HOME MENGGUNAKAN METODE NAÏVE BAYES

Rahmadini, Fitri - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

This study aims to detect and classify Distributed Denial of Service (DDoS), Denial of Service (DoS), and Man in The Middle (MITM) attacks on smart home devices using the Naïve Bayes method. The research begins by identifying important features of network traffic such as frame.time.epoch, ip.src, ip.dst, eth.src, eth.dst, tcp.srcport, tcp.dstport, arp, and frame.len, which play a crucial role in the attack classification process. The Naïve Bayes method is applied in two variants, Gaussian and Bernoulli, to analyze their effectiveness in classifying attack data. Evaluation is conducted using accuracy, precision, recall, and F1-score metrics. The results show that Gaussian Naïve Bayes performs better than Bernoulli Naïve Bayes, achieving 99.41% accuracy and 95.67% effectiveness, while Bernoulli Naïve Bayes reaches 96.79% accuracy and 91.72% effectiveness. Overall, the Naïve Bayes method proves to be effective and efficient in detecting and classifying various types of cyberattacks in smart home environments, with the Gaussian variant being the most optimal model.


Availability
Inventory Code Barcode Call Number Location Status
2507006249T185628T1856282025Central Library (Reference)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1856282025
Publisher
Indralaya : Prodi Sistem Komputer, Fakultas Ilmu Komputer Universitas Sriwijaya., 2025
Collation
xiii, 98 hlm.; ilus.; tab.; 29 cm.
Language
Indonesia
ISBN/ISSN
-
Classification
005.840 7
Content Type
Text
Media Type
unmediated
Carrier Type
other (computer)
Edition
-
Subject(s)
Prodi Sistem Komputer
Serangan Malware Komputer
Specific Detail Info
-
Statement of Responsibility
MI
Other version/related
TitleEditionLanguage
DETEKSI SERANGAN MALWARE RANSOMWARE PADA BITCOIN MINING DENGAN METODE K-MEANS CLUSTERINGid
DETEKSI SERANGAN MALWARE ANDROID REVERSE TCP PADA NETWORK TRAFFIC MENGGUNAKAN METODE EXTREME GRADIENT BOOSTING (XGBOOST)id
DETEKSI SERANGAN MALWARE ANDROID REVERSE TCP PADA LALU LINTAS JARINGAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINEid
File Attachment
  • DETEKSI SERANGAN DDOS DOS DAN MITM PADA PERANGKAT SMART HOME MENGGUNAKAN METODE NAÏVE BAYES
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search