The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of DETEKSI SISTEM ISYARAT BAHASA INDONESIA (SIBI) MENGGUNAKAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK (CNN) DENGAN METODE RESNET-50 SECARA REAL-TIME

Skripsi

DETEKSI SISTEM ISYARAT BAHASA INDONESIA (SIBI) MENGGUNAKAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK (CNN) DENGAN METODE RESNET-50 SECARA REAL-TIME

Imron, AL - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

Communication is essential in life but poses a significant barrier between the hearing-impaired community and the general public due to a lack of understanding of Sign Language. This research aims to develop a real-time detection system for the Indonesian Sign Language System (SIBI) to bridge this communication gap. The method employed is a Deep Learning architecture using a Convolutional Neural Network (CNN) with transfer learning from a ResNet-50 model pre-trained on the ImageNet dataset. The SIBI dataset used consists of 5,280 images covering 24 letters (A-Y). The data was split into training (70%), validation (15%), and test (15%) sets. Model training involved fine-tuning, data augmentation, and class weighting application. The best model M2 achieved an accuracy of 97.47%, precision of 97.72%, recall of 97.47%, and an F1-Score of 97.60% on the test data. The real-time system implementation using a webcam successfully detected and classified the 24 SIBI letters with an average accuracy of 99.5% and sufficient speed. The results prove that the ResNet-50 architecture is highly effective and accurate for real-time SIBI sign language detection, holding great potential to be developed into an inclusive communication aid.


Availability
Inventory Code Barcode Call Number Location Status
2507006247T185598T1855982025Central Library (Reference)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1855982025
Publisher
Indralaya : Prodi Sistem Komputer, Fakultas Ilmu Komputer Universitas Sriwijaya., 2025
Collation
xiv, 93 hlm.; ilus.; tab.; 29 cm.
Language
Indonesia
ISBN/ISSN
-
Classification
419.07
Content Type
Text
Media Type
unmediated
Carrier Type
other (computer)
Edition
-
Subject(s)
Bahasa Isyarat
Prodi Sistem Komputer
Specific Detail Info
-
Statement of Responsibility
MI
Other version/related
TitleEditionLanguage
STRATEGI KOMUNIKASI GERKATIN PALEMBANG (GERAKAN KESEJAHTERAAN TUNARUNGU) DALAM MENSOSIALISASIKAN BAHASA ISYARAT INDONESIA ATAU BISINDO KEPADA MASYARAKAT DI KOTA PALEMBANGid
EKSISTENSI DAN URGENSI PENERJEMAH BAHASA ISYARAT "BISU TULI" DALAM MELANCARKAN PROSES PERADILAN PIDANAid
DETEKSI BAHASA ISYARAT INDONESIA (BISINDO) SECARA REAL-TIME DENGAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK (CNN) MENGGUNAKAN MODEL MOBILENETid
File Attachment
  • DETEKSI SISTEM ISYARAT BAHASA INDONESIA (SIBI) MENGGUNAKAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK (CNN) DENGAN METODE RESNET-50 SECARA REAL-TIME
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search