The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of KLASIFIKASI TREN TUGAS AKHIR MAHASISWA PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS SRIWIJAYA DARI TAHUN 2019 – 2023 MENGGUNAKAN METODE LATENT DIRICHLET ALLOCATION (LDA)

Skripsi

KLASIFIKASI TREN TUGAS AKHIR MAHASISWA PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS SRIWIJAYA DARI TAHUN 2019 – 2023 MENGGUNAKAN METODE LATENT DIRICHLET ALLOCATION (LDA)

Kamal, Muhammad Raihan Aufa - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

The final project is a critical component of higher education, particularly in computer science and informatics, which continues to evolve rapidly, influencing the direction of academic research. This study aims to classify the trends in final project topics among students of the Informatics Engineering Program at Universitas Sriwijaya during the 2019–2023 period using the Latent Dirichlet Allocation (LDA) method. By applying hyperparameter tuning to a dataset of 2027 data, the LDA model demonstrated an improvement in coherence score from 0.34941 to 0.45613, highlighting its capability to effectively reduce word dimensions. The LDA analysis successfully identified six primary topics, including artificial intelligence, decision support systems, and information security, with visualizations such as word clouds and bar charts illustrating annual topic distributions. The study revealed a shift in research focus, with decision support systems being the dominant topic, while artificial neural networks and data-based algorithms showed increasing relevance. These findings conclude that the application of the LDA method is effective in identifying student research trends and provides valuable insights into the dynamics of final project topics over the analyzed period.


Availability
Inventory Code Barcode Call Number Location Status
2507005968T184593T1845932025Central Library (Reference)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1845932025
Publisher
Indralaya : Prodi Teknik Informatika, Fakultas Ilmu Komputer Universitas Sriwijaya., 2025
Collation
xv, 138 hlm.; ilus.; tab.; 29 cm.
Language
Indonesia
ISBN/ISSN
-
Classification
006.307
Content Type
Text
Media Type
unmediated
Carrier Type
other (computer)
Edition
-
Subject(s)
Kecerdasan Buatan
Prodi Teknik Informatika
Specific Detail Info
-
Statement of Responsibility
MI
Other version/related
TitleEditionLanguage
PENERAPAN INDOBERT UNTUK ANALISIS SENTIMEN DAN LATENT DIRICHLET ALLOCATION (LDA) UNTUK PEMODELAN TOPIK PADA ULASAN APLIKASI BANK SUMSELBABEL MOBILEid
File Attachment
  • KLASIFIKASI TREN TUGAS AKHIR MAHASISWA PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS SRIWIJAYA DARI TAHUN 2019 – 2023 MENGGUNAKAN METODE LATENT DIRICHLET ALLOCATION (LDA)
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search