The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of PENDEKATAN MODEL MACHINE LEARNING DALAM DETEKSI ANCAMAN SERANGAN SIBER DI SECURITY OPERATION CENTER

Skripsi

PENDEKATAN MODEL MACHINE LEARNING DALAM DETEKSI ANCAMAN SERANGAN SIBER DI SECURITY OPERATION CENTER

Saputra, Muhammad Ajran - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

The evolution of technology roles attracted cyber security threats not only compromise stable technology but also cause significant financial loss for organizations and individuals. As a result, organizations must create and implement a comprehensive cybersecurity strategy to minimize further loss. The founding of a cybersecurity surveillance center is one of the optimal adopted strategies, known as security operation center (SOC). The strategy has become the forefront of digital systems protection. We propose strategy optimization to prevent or mitigate cyberattacks by analyzing and detecting log anomalies using machine learning models. This study employs two machine learning models: the naïve Bayes model with multinomial, Gaussian, and Bernoulli variants, and the support vector machine (SVM) model with radial basis function (RBF), linear, polynomial, and sigmoid kernel variants. The hyperparameters in both models are then optimized. The models with optimized hyperparameters are subsequently trained and tested. The experimental results indicate that the best performance is achieved by the RBF kernel SVM model, with an accuracy of 79.75%, precision of 80.8%, recall of 79.75%, and F1-score of 80.01%; and the Gaussian naïve Bayes model, with an accuracy of 70.0%, precision of 80.27%, recall of 70.0%, and F1-score of 70.66%. Overall, both models perform relatively well and are classified in the very good category (75% - 89%).


Availability
Inventory Code Barcode Call Number Location Status
2507003651T175754T1757542025Central Library (Reference)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T1757542025
Publisher
Indralaya : Program Magister Ilmu Komputer, Fakultas Ilmu Komputer Universitas Sriwijaya., 2025
Collation
xvi, 113 hlm.; ilus.; tab.; 29 cm.
Language
Indonesia
ISBN/ISSN
-
Classification
004.07
Content Type
Text
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Ilmu Komputer
Specific Detail Info
-
Statement of Responsibility
MI
Other version/related

No other version available

File Attachment
  • PENDEKATAN MODEL MACHINE LEARNING DALAM DETEKSI ANCAMAN SERANGAN SIBER DI SECURITY OPERATION CENTER
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search