The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of KLASIFIKASI ABNORMALITAS JANTUNG ANAK DENGAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORKS BINARI DAN MULTI-KELAS

Skripsi

KLASIFIKASI ABNORMALITAS JANTUNG ANAK DENGAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORKS BINARI DAN MULTI-KELAS

Unigha, Siti Luthfia  - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

This study aims to develop a classification model using Convolutional Neural Networks (CNN) architecture to identify heart abnormalities in children. In this study, binary and multi-class CNNs are used to process data from children's heart images and produce abnormality class predictions. The data used in this study comes from two categories: normal hearts and hearts with abnormalities. The results of the study show that both CNN models (binary and multi-class) successfully classified children's heart images with a high level of accuracy. The best performance achieved in the case of classifying abnormalities in Infant is by ResNet101 with an accuracy of 94.75% for the abnormality class, while the accuracy for the preview class is 99%. For the unseen data in the view class, the obtained accuracy is 94.2%, and for the unseen data in the abnormality class, the obtained accuracy is 94.75%. In conclusion, the results of this study show that Convolutional Neural Networks architecture can be used to classify heart abnormalities in children with a high level of accuracy. This model can be a useful tool in quickly and accurately diagnosing heart abnormalities in children


Availability
Inventory Code Barcode Call Number Location Status
2307001894T105211T1052112023Central Library (Referens)Available
Detail Information
Series Title
-
Call Number
T1052112023
Publisher
Indralaya : Prodi Sistem Komputer, Fakultas Ilmu Komputer Universitas Sriwijaya., 2023
Collation
xiv, 102 hlm.; ilus.; 29 cm
Language
ISBN/ISSN
-
Classification
005.707
Content Type
Text
Media Type
unmediated
Carrier Type
-
Edition
-
Subject(s)
Prodi Sistem Komputer
Data dalam sistem-sistem komputer
Specific Detail Info
-
Statement of Responsibility
MURZ
Other version/related

No other version available

File Attachment
  • KLASIFIKASI ABNORMALITAS JANTUNG ANAK DENGAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORKS BINARI DAN MULTI-KELAS
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search