The Sriwijaya University Library

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Login
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of KLASTERISASI DATA PENERIMAAN MAHASISWA BARU UNTUK MENENTUKAN TARGET PROMOSI UNIVERSITAS SRIWIJAYA MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING

Text

KLASTERISASI DATA PENERIMAAN MAHASISWA BARU UNTUK MENENTUKAN TARGET PROMOSI UNIVERSITAS SRIWIJAYA MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING

Anggraini, Nadya - Personal Name;

Penilaian

0,0

dari 5
Penilaian anda saat ini :  

Saat ini, persaingan antar perguruan tinggi negeri maupun swasta dalam rangka penerimaan mahasiswa baru memang semakin pesat. Universitas Sriwijaya adalah salah satu perguruan tinggi terbesar di Sumatera Selatan yang secara terus-menerus melakukan peningkatan mutu kualitas terhadap sarana dan prasarana untuk menarik calon mahasiswa. Dikarenakan persaingan yang ketat, dibutuhkan strategi yang tepat bagi universitas untuk melakukan promosi. Dalam penelitian ini, menerapkan ilmu data mining dalam melakukan pengolahan data penerimaan mahasiswa baru Universitas Sriwijaya tahun 2019-2020 untuk mengelompokkan data sebaran asal sekolah mahasiswa. Dari pengolahan yang telah dilakukan melalui aplikasi RapidMiner, terbentuklah 3 cluster berdasarkan jumlah penerimaan mahasiswa baru. Dari analisis karakteristik cluster yang terbentuk, diketahui bahwa cluster yang paling efisien dan efektif untuk dijadikan target promosi adalah cluster 1 dengan jumlah anggota cluster sebanyak 60 sekolah. Hasil dari penelitian ini dapat dijadikan usulan untuk Tim PMB Univeresitas Sriwijaya dalam penentuan target promosi pada tahun-tahun berikutnya. Currently, competition between public and private universities in the context of new student admissions is indeed increasing rapidly. Sriwijaya University is one of the largest universities in South Sumatra which continuously improves the quality of facilities and infrastructure to attract prospective students. Due to intense competition, it takes the right strategy for universities to promote. In this study, applying data mining science in processing data on new student admissions at Sriwijaya University in 2019-2020 to classify data from the distribution of student schools. From the processing that has been done through the RapidMiner application, 3 clusters are formed based on the number of new student admissions. From the analysis of the characteristics of the cluster formed, it is known that the most efficient and effective cluster to be used as a promotion target is cluster 1 with a total of 60 cluster members. The results of this study can be proposed to the Sriwijaya University PMB Team in determining promotion targets in the following years.


Availability
Inventory Code Barcode Call Number Location Status
2207002062T73748T737482022Central Library (Referens)Available but not for loan - Not for Loan
Detail Information
Series Title
-
Call Number
T737482022
Publisher
Inderalaya : Prodi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Sriwijaya., 2022
Collation
xv, 103 hlm.; ilus.; 29 cm
Language
Indonesia
ISBN/ISSN
-
Classification
005.707
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Prodi Sistem Informasi
Data dalam sistem-sistem komputer
Specific Detail Info
-
Statement of Responsibility
SEPTA
Other version/related

No other version available

File Attachment
  • KLASTERISASI DATA PENERIMAAN MAHASISWA BARU UNTUK MENENTUKAN TARGET PROMOSI UNIVERSITAS SRIWIJAYA MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING
Comments

You must be logged in to post a comment

The Sriwijaya University Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search